If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5r^2=936
We move all terms to the left:
5r^2-(936)=0
a = 5; b = 0; c = -936;
Δ = b2-4ac
Δ = 02-4·5·(-936)
Δ = 18720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18720}=\sqrt{144*130}=\sqrt{144}*\sqrt{130}=12\sqrt{130}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{130}}{2*5}=\frac{0-12\sqrt{130}}{10} =-\frac{12\sqrt{130}}{10} =-\frac{6\sqrt{130}}{5} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{130}}{2*5}=\frac{0+12\sqrt{130}}{10} =\frac{12\sqrt{130}}{10} =\frac{6\sqrt{130}}{5} $
| 4(x+15)+6=14 | | 2(y-4)=8(y-1)-6y | | 54-18x=-198 | | -8x+38=-6(x-7)+2 | | -6(9-3x)=-198 | | j/4=3 | | 3(y+4)=8y-23 | | -54-18x=-198 | | g+5=14 | | m/4=18 | | 3(p+2)=198 | | -4p+30=14 | | -6(9-3x)=198 | | 2x-95-x)=5/2 | | 2=g-5 | | 5-(8+3y)=13-7y | | 8x+28=5x+64 | | f/8-24=-29 | | v+16=9-10/v | | 3(3-3x)-4x=-95 | | 7x-17=33+2x | | 5(x+7)-2x=13 | | 3(1+3x)=0 | | -8s=-5-7s | | 7d+3=10 | | 21x+6=23x-5 | | A-6=-72+8a | | -7+4r=7r-7 | | 115=49-6x | | -5+3n=13-6n | | g/4+17=26 | | (4^(2x))-6*(4^x)+8=0 |